Descripción de la dieta de una población de Oophaga histrionica (Athesphatanura: Dendrobatidae) en un enclave seco del Valle del Cauca, Colombia
DOI:
https://doi.org/10.18636/bioneotropical.v5i1.165Palabras clave:
Alcaloides lipofílicos, Amplitud de nicho, Contenidos estomacales, Dieta, Hormigas.Resumen
Se describe la dieta de Oophaga histrionica (Berthold, 1845) basados en el contenido estomacal de 46 individuos colectados en un enclave seco de la Cordillera Occidental de Colombia. Se registran 2322 ítem de presas, clasificados en 21 grupos taxonómicos. Las hormigas y los ácaros fueron el ítem de presa con mayor índice de importancia (Ii) con 44.32 y 12.13 respectivamente. Como las hormigas son el ítem de presa más importante para estas ranas y están relacionadas con los precursores de alcaloides en los dendrobatidos, identificamos las hormigas hasta el nivel de género. Los géneros con mayores índices de importancia fueron solenopsis (51.89), Monomorium (11.55) y Wasmania (11.2), los cuales son reconocidos por producir alcaloides piperidínicos. Por otra parte, aunque la amplitud del nicho de O. histrionica no es muy amplia, si es mayor que en otras especies estrechamente relacionadas con los cuales se comparó.
Descargas
Citas
Arce-Domínguez F, Rengifo-Mosquera JT. 2013. Dieta de Phyllobates aurotaenia y Oophaga histrionica (Anura:Dendrobatidae) en el municipio de Alto Baudó, Chocó, Colombia. Acta Zool Mex. 29: 255-68.
Biavati GM, Wiederehecker HC, Colli GR. 2004. Diet of Epipedobates flavopictus (Anura: Dendrobatidae) in a neotropical savanna. J Hepetol. 38: 510-8.
Bolivar W, Lötters S, Grant T. 2004. Oophaga histrionica. The IUCN Red List of threatened species. Version 2014. 3 URL disponible en: http://www.iucnredlist.org/ www.iucnredlist.org (Downloaded on 15 January 2015).
Caldwell JP. 1996. The evolution of myrmecophagy and its correlates in poison frog (Family Dendrobatidae). J Zool. (London) 240: 75-101.
Daly JW, Secuda SI, Garrafo HM, Spande TF, Wisnieski A, Cover JF. 1994. An uptakes system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon. 36: 657-63.
Daly JW, Garrafo MH, Myers CW. 1997. The origin of frog skin alkaloids: an enigma. Pharmaceut News. 4: 9-14.
Darst CR, Menéndez-Guerrero PA, Coloma LA, Canatella DC. 2005. Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. Am Natural. 156: 56-69.
Donnelly MA. 1991. Feeding patterns of the strawberry poison frog, Dendrobates pumilio (Anura: Dendrobatidae). Copeia. 3: 723-30.
Fernández F (ed.). 2003. Introducción a las hormigas de la región neotropical. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; XXVI + 398 p.
Johnson NF,Triplehorn CA. 2004. Borror and DeLong’s introduction to the study of insects. 7 ed. Boston: Brooks Cole; 888 p.
Jones TH, Wojciechowski TJ, Snelling RR, Torres JA, Chacón P, Devries PJ. 1999. Dialkilpyrroloidinas from the ants Megalomyrmex cyendyra Brandao and M. latreillei Emery. Caribbean J Sci. 35 (3-4): 310-1.
Maan EM, Cummings ME. 2012. Poison frog colors are honest signals of toxicity, particularly for bird predators. Am Naturalist. 179: E1-E14.
Mebs D, Jansen M, Köhler G, Pogoda W, Kauert G. 2010. Myrmecophagy and alkaloid sequestration in amphibians: a study on Ameerega picta (Dendrobatidae) and Elachistocleis sp. (Microhylidae) frogs. Salamandra. 46: 11-5.
Obrtel R, Holisová V. 1974. Trophic niches of Apodemus flavicollis and Clethrionomys glareolus in lowland forest. Acta Scient Nat Acad Scient Bohem Brno. 8 (7): 1-37.
Parmelee JR. 1999. Trophic ecology of a tropical anuran assemblage. Sci Pap Nat Hist Mus The University of Kansas. 11: 1-59.
Pianka ER. 1986. Ecology and natural history of desert lizards: analyses of the ecological niche and community structure. Princeton: Princeton University Press; 222 p.
Resh VH, Cardé RT. 2009. Encyclopedia of insects. Burlington: Academic Press; 1132 p.
Santos JC, Coloma LA, Canatella DC. 2003. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc Nat Acad Sci. USA 100: 12792-7.
Saporito RA, Spande TF, Garrafo HM, Donelly MA. 2009. Arthropod alkaloids in poison frogs: A review of the‘dietary hypothesis’. ç Heterocycles. 79: 277-97.
Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW. 2007. Oribatid mites as a major dietary source for alkaloids in poison frogs. Proceed Nat Acad Sci USA. 104: 8885-90.
Schoener TW. 1989. Should hindgut contents be included in
lizard dietary compilations? J Herpetol. 23: 455-8.
Silverstone PA. 1975. A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History Museum of Los Angeles County. Sci Bull. 21: 1-55.
Spande TF, Jain P, Garrafo MH, Pannell LK, Yeh HJC, Daly JW, et al. 1999. Ocurrence and significance of decahydro- quinolines from dendrobatid poison frogs and myrmicine ants: use of 1H and 13C NMR in their conformational analysis. J Nat Prod. 62: 5-21.
Storke NE, Blackburn TM. 1993. Abundance, body size and biomass of arthropod in tropical forest. Oikos. 67: 483-9.
Summers K, Clough ME. 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proc Nat Acad Sci. USA 11: 6227-32.
Summers K, McKeon CS. 2004. The evolutionary ecology of phytotelmata use in neotropical poison frogs. Miscella neous Publications Museum of Zoology University of Michigan. 193: 55-73.
Toft CA. 1980. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia. 45: 131-41.
Toft CA. 1995. Evolution of diet specialization in poison-dart frogs (Dendrobatidae). Herpetologica. 51: 202-16.
Valderrama-Vernaza M, Ramírez-Pinilla MP, Serrano-Cardozo VH. 2009. Diet of the andean frog Ranitomeya virolensis (Athesphatanura: Dendrobatidae). J Herpetol. 43: 114-23.
Vitt LJ, Caldwell JP. 2009. Herpetology. 3rd ed. Burlington: Academic Press. 713 p.