Functional responses of bats associated to tropical dry-forest in Córdoba (Colombia): management implications in extensive livestock systems

Authors

  • Dennis Castillo-Figueroa, CO Pontificia Universidad Javeriana, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Laboratorio de Ecología Funcional, Bogotá, Colombia
  • Jairo Pérez-Torres, CO Pontificia Universidad Javeriana, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Laboratorio de Ecología Funcional, Bogotá, Colombia

DOI:

https://doi.org/10.18636/bioneotropical.v8i3.724

Keywords:

Biological collections, Conventional system, Ecological group, Functional traits, Response traits, Silvopastoral system

Abstract

Introduction: In the Colombian Caribbean, the expansion of conventional management systems (CS) of extensive livestock has lead a massive loss of tropical dry forest (Td-F). Despite silvopastoral systems (SPS) have been implemented in this region, there are few studies evaluating the incidence of this type of management on bats. Objective: Analyze the variation of functional traits of bat ecological groups betweenfragments of Td-F immersed in CS and SPS belonging to five localities of Córdoba department (Colom- bia). Methodology: Using bat specimens from biological collections, ecological groups were identifiedbased on life history traits, and then each group were compared using morphometric traits related to size(forearm length) and flight (length of digit three and five) between fragments of Td-F immersed in CS andSPS. Results: Six ecological groups were identified. The traits related to size and flight were significantly higher in SPS for two ecological groups (p<0,05). The matrix in the SPS provides habitat for bats, which may offer better conditions for the morphometric development of some key species in the pollination andseed dispersal processes. Conclusion: Although the functional responses of bats were idiosyncratic,silvopastoral management seems to be more sustainable for these mammals. It is important to take into account the type of management of productive systems that improve biodiversity, because they dominate in the matrix of the landscapes, so they are determinant for the maintenance of the species in habitat transformation contexts.

Downloads

Download data is not yet available.

References

Aguirre LF, Montaño-Centellas FA, Gavilanez MM, Stevens RD. 2016. Taxonomic and phylogenetic determinants of functional composition of Bolivian bat assemblages. Plos One. 11:1-15. Disponible en: https://doi.org/10.1371/ journal.pone.0158170

Aktar W, Sengupta D, Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol. 2 (1): 1-12. Disponible en: doi 10.2478/v10102- 009-0001-7

Arroyo-Rodríguez V, Rojas C, Saldaña-Vásquez RA, Stoner KE. 2016. Landscape composition is more important than landscape configuration for phyllostomid bat assem- blages in a fragmented biodiversity hotspot. Biological Conservation. 198: 84-92. Disponible en: https://doi. org/10.1016/j.biocon.2016.03.026

Arroyo-Rodríguez V, Pérez-Elissetche GK, Ordonez-Gómez JD, Gonzáles-Zamora A, Chaves OM, Sánchez-López S, et al. 2017. Spider monkeys in human-modified land- scapes: The importance of the matrix. Tropical Conserva- tion Science. 10: 1-13. doi 10.1177/1940082917719788

Baker RJ, Solari S, Cirranello A, Simmons NB. 2016. Higher level classification of phyllostomid bats with a summary of DNA synapomorphies. Acta Chiropterologica. 18 (1): 1-38. Disponible en: https://doi.org/10.3161/15081109A CC2016.18.1.001

Ballesteros-Correa J. 2015. Efecto del manejo silvopastoril y convencional de ganadería extensiva sobre el ensamblaje de murciélagos asociados a fragmentos de bosque seco tropical en Córdoba, Colombia. (Tesis doctoral). Bogotá: Pontificia Universidad Javeriana; 220 pp. Disponible en: https://repository.javeriana.edu.co/bitstream/hand- le/10554/19650/BallesterosCorreaJesus2015.pdf?se- quence=1&isAllowed=y

Blaum N, Mosner E, Schwager M, Jeltsch F. 2011. How func- tional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type ap- proach. Biodivers Conserv. 20 (11): 2333-45. Disponible en: https://link.springer.com/article/10.1007/s10531-011- 9995-1

Bradshaw CJA, Sodhi NS, Brook BW. 2009. Tropical turmoil: a biodiversity tragedy in progress. Frontiers in Ecology

and the Environment. 7 (2): 79-87. Disponble en: https:// www.researchgate.net/publication/235438413_Tropical_ turmoil_A_biodiversity_tragedy_in_progress

Calle A, Montagnini F, Zuluaga AF. 2009. Farmer ́s perception of silvopastoral system promotion in Quindío, Colombia. Bois et Forêts des tropiques. 300 (2): 80-94. Disponible en: http://bft.cirad.fr/cd/BFT_300_79-94.pdf

Calonge B, Vela-Vargas I, Pérez-Torres J. 2010. Murciélagos asociados a una finca ganadera en Córdoba (Colombia). Rev MVZ Córdoba. 15 (1): 1938-43. Disponible en: ht- tps://doi.org/10.21897/rmvz.331

Calonge B, 2012. Ectoparásitos de murciélagos presentes en fragmentos de bosque seco tropical en manejos de gana- dería convencional y silvopastoril (Córdoba, Colombia). (Tesis de Maestría). Bogotá: Pontificia Universidad Jave- riana; 113 pp.

Carmona CP, de Bello F, Mason NW, Leps J. 2016. Traits without borders: integrating functional diversity across scales. Trends Ecol Evol. 31 (5): 382-94. doi: 10.1016/j. tree.2016.02.003.

Carvajal-Cogollo JE, Urbina-Cardona JN. 2015. Ecological grouping and edge effects in tropical dry forest: rep- tile-microenvironment relationships. Biodivers Conserv. 24 (5): 1109-30. Disponible en: https://link.springer.com/ article/10.1007/s10531-014-0845-9

Casanoves F, Pla L, Di Rienzo JA (eds.). 2011. Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Serie Técnica. Informe técnico N° 384. Turrialba: CATIE; 119 pp. Disponible en: http:// www.nucleodiversus.org/uploads/file/Casanoves%20 et%20al%202011%20Serie%20Tecnica%20CATIE.pdf

Castillo-Figueroa D. 2018a. Beyond specimens: linking biolog- ical collections, functional ecology and biodiversity con- servation. Revista Peruana de Biología. 25 (3): 343-8. doi: 10.15381/rpb.v25i3.14246

Castillo-Figueroa D. 2018b. Fluctuating asymmetry of three bat species in extensive livestock systems of Córdoba depart- ment, Colombia. Rev Colomb Cienc Anim. 10 (2): 143- 53. Disponible en: http://www.scielo.org.co/scielo.php?s- cript=sci_arttext&pid=S2027-42972018000200143

Castillo-Figueroa D, Pérez-Torres J. 2018. First records of wing defects in phyllostomid bats from Colombia. Journal of Bat Research & Conservation. 11 (1): 1-5. Disponible en: https://www.academia.edu/36776769/First_records_of_ wing_defects_in_phyllostomid_bats_from_Colombia

Castro-Luna AA, Galindo-González J. 2012. Enriching agro- ecosystems with fruit-producing tree species favors the abundance and richness of frugivorous and nectarivorous bats in Veracruz, Mexico. Mammalian Biology. 77 (1): 32-40. Disponible en: https://bit.ly/2WQ2R0k

Ceballos G, García A, Ehrlich PR. 2010. The sixth extinction crisis loss of animal populations and species. Journal of Cosmology. 8: 1821-31. Disponible en: https://www. researchgate.net/publication/266231196_The_Sixth_Ex- tinction_Crisis_Loss_of_Animal_Populations_and_Species

Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015. Accelerated modern human-induced

species losses: Entering the sixth mass extinction. Sci- ence Advances. 1 (5): 1-5. Disponible en: http://advances. sciencemag.org/content/1/5/e1400253

Cleary KA, Waits LP, Finegan B. 2016. Agricultural intensifi- cation alters bat assemblage composition and abundance in a dynamic Neotropical landscape. Biotropica. 48 (5): 667-76. Disponible en: https://doi.org/10.1111/btp.12327

Dietz C, Dietz I, Siemers BM. 2006. Wing measurement varia- tions in the five European horseshoe bat species (Chirop- tera: Rhinolophidae). J Mammal. 87 (6): 1241-51. Disponible en: https://doi.org/10.1644/05-MAMM-A-299R2.1

Di Rienzo JA, Casanoves F, Balzarini MG, González LA, Ta- blada EM, Robledo CW. 2008. InfoStat, version 2008. Software estadístico. Manual del usuario. Córdoba: Gru- po InfoStat, FCA, Universidad Nacional de Córdoba. Disponible en: https://www.researchgate.net/publica- tion/283491340_Infostat_manual_del_usuario

Duchamp JE, Swihart RK. 2008. Shifts in bat community struc- ture related to evolved traits and features of human-al- tered landscapes. Landscape Ecology. 23 (7): 849-60. Disponible en: https://link.springer.com/article/10.1007/ s10980-008-9241-8

Estrada-Villegas S, Meyer CFJ, Kalko EKV. 2010. Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biological Con- servation. 143 (3): 597-608. Disponible en: https://doi. org/10.1016/j.biocon.2009.11.009

Farneda FZ, Rocha R, López-Baucells A, Groenenberg M, Silva I, Palmeirim JM, et al. 2015. Trait-related res- ponses to habitat fragmentation in Amazonian bats. Journal of Applied Ecology. 52 (5): 1381-91. Disponi- ble en: https://besjournals.onlinelibrary.wiley.com/doi/ epdf/10.1111/1365-2664.12490

Franklin JB, Lindenmayer DB. 2009. Importance of matrix habitats in maintaining biological diversity. PNAS. 106 (2): 349-50. Disponible en: https://www.pnas.org/con- tent/106/2/349

Galindo-González J. 1998. Dispersión de semillas por murciélagos: su importancia en la conservación y regeneración del bosque tropical. Acta Zool Mex. 73: 57-74. Disponible en: https://www.redalyc.org/articulo.oa?idp=1&i- d=57507304&cid=9157

García-García JL, Santos-Moreno A, Kraker-Castañeda C. 2014. Ecological traits of phyllostomid bats associated with sensitivity to tropical forest fragmentation in Los Chimalapas, Mexico. Tropical Conservation Science. 7 (3): 457-74. Disponible en: https://journals.sagepub.com/ doi/full/10.1177/194008291400700307

García-Morales R, Moreno CE, Badano EI, Zuria I, Galin- do-González J, Rojas-Martínez AE, Ávila-Gómez ES. 2016. Deforestation impacts on bat functional diversity in tropical landscapes. Plos One. 11: 1-16. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/ journal.pone.0166765

Gardner AL (ed.). 2007. Mammals of South America. Volume 1: Marsupials, Xenarthrans, Shrews, and Bats. Chicago: The University of Chicago Press; 690 pp.

Gómez MF, Moreno LA, Andrade G, Rueda C (eds.). 2016. Biodiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia. Bogotá: Instituto Alexander von Humboldt. Disponible en: http://www.humboldt.org. co/es/test/item/898-bio2015

Gómez-Ortiz Y, Moreno CE. 2017. La diversidad funcional en comunidades animales: una revisión que hace énfasis en los vertebrados. Animal Biodiversity and Conservation. 40 (2): 165-74. Disponible en: http://abc.museuciencies- journals.cat/files/ABC_40-2_pp_165-174.pdf

Gonçalves F, Fischer E, Dirzo R. 2017. Forest conversion to cattle ranching differentially affects taxonomic and func- tional groups of Neotropical bats. Biological Conser- vation. 210 (Part A): 343-8. Disponible en: https://doi. org/10.1016/j.biocon.2017.04.021

González JJ, Etter AA, Sarmiento AH, Orrego SA, Ramírez CD, Cabrera E, et al. 2011. Análisis de tendencias y patrones espaciales de deforestación en Colombia. Bogotá: Insti- tuto de Hidrología, Meteorología y Estudios Ambientales (IDEAM); 64 pp. Disponible en: http://bit.ly/2VZUsaC

Guisande C, Heine J, González-DaCosta J, García-Roselló E. 2014. RWizard Software. Disponible en: http://www. ipez.es/rwizard

Hanspach J, Fischer J, Ikin K, Stott J, Law BS. 2012. Us- ing trait-based filtering as a predictive framework for conservation: a case study of bats on farms in south- eastern Australia. Journal of Applied Ecology. 49 (4): 842-50. Disponible en: https://doi.org/10.1111/j.1365- 2664.2012.02159.x

Ibrahim M, Villanueva C, Casasola F, Rojas J. 2006. Sistemas silvopastoriles como una herramienta para el mejora- miento de la productividad y restauración de la integridad ecológica de paisajes ganaderos. Pastos y Forrajes. 29 (4): 383-419. Disponible en: https://bit.ly/2Ur02WQ

Kalko EKV, Schnitzler H-U. 1993. Plasticity in echolocation signals of European pipistrelle bats in search flight: im- plications for habitat use and prey detection. Behavioral Ecology and Sociobiology. 33 (6): 415-28. Disponible en: https://link.springer.com/article/10.1007/BF00170257

Kalko EKV, Estrada Villegas S, Schmidt M, Wegmann M, Meyer CFJ. 2008. Flying high-assessing the use of the aerosphere by bats. Integrative & Comparative Biology. 48 (1): 60-73. Disponible en: https://doi.org/10.1093/icb/ icn030

Kasso M, Balakrishnan M. 2013. Ecological and economic im- portance of ats (order Chiroptera). Hindawi Publishing Corporation. Article ID 187415: 9 pp. Disponible en: https://www.hindawi.com/journals/isrn/2013/187415/

Kotiaho JS, Kaitala V, Komonen A, Päivinen J. 2005. Predicting the risk of extinction from shared ecological characteris- tics. PNAS. 102 (6): 1963-7. Disponible en: https://doi. org/10.1073/pnas.0406718102

Laurance WF. 1991. Ecological correlates of extinction prone- ness in Australian tropical rain forest mammals. Conser- vation Biology. 5 (1): 79-89. Disponible en: https://doi. org/10.1111/j.1523-1739.1991.tb00390.x

Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology. 16 (5): 545-56. Disponible en: https://besjournals.onlinelibrary.wiley.com/doi/10.1046/j.1365-2435.2002.00664.x

Luck GW, Lavorel S, Mclntyre S, Lumb K. 2012. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. Journal of Animal Ecology. 81 (5): 1065-76. Disponible en: https://doi.org/10.1111/ j.1365-2656.2012.01974.x

Medina A, Harvey CA, Sánchez-Merlo D, Vílchez S, Hernández B. 2007. Bat diversity and movement in an agricul- tural landscape in Matiguás, Nicaragua. Biotropica. 39 (1): 120-8. Disponible en: https://doi.org/10.1111/j.1744- 7429.2006.00240.x

McAlpine CA, Etter A, Fearnside PM, Seabrook L, Laurance WF. 2009. Increasing world consumption of beef as a driver of regional and global change: A call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Global Environmental Change. 19 (1): 21-33. Disponible en: https://doi.org/10.1016/j.glo- envcha.2008.10.008

Monadjem A, Conenna I, Taylor PJ, Schoeman MC. 2018. Species richness patterns and functional traits of the bat fauna of arid southern Africa. Hystrix Ital J Mammal. 29: 19-24. Disponible en: https://doi.org/10.4404/hys- trix-00016-2017

Montoya-Bustamante S, Rojas-Díaz V, Torres-González AM. 2016. Interactions between frugivorous bats (Chiroptera: Phyllostomidae) and Piper tuberculatum (Piperaceae) in a tropical dry forest in Valle del Cauca, Colombia. Rev Biol Trop. 64 (2): 701-13. Disponible en: https://revistas. ucr.ac.cr/index.php/rbt/article/view/20689

Muñoz J. 2001. Los murciélagos de Colombia: sistemática, distribución, descripción, historia natural y ecología. Medellín: Universidad de Antioquia; 391 pp.

Murgueitio E, Cuellar P, Ibrahim M, Gobbi J, Cuartas CA, Na- ranjo JF, et al. 2006. Adopción de sistemas agroforestales pecuarios. Pastos y Forrajes. 29 (4): 365-81. Disponible en: https://bit.ly/2FYeiw6

Norberg UM, Rayner JMV. 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. B Biol. 316 (1179): 335-427. Di- sponible en: https://royalsocietypublishing.org/doi/ abs/10.1098/rstb.1987.0030

Olaya-Rodríguez MH. 2009. Análisis de la estratificación ver- tical del ensamblaje de murciélagos de un fragmento de bosque seco tropical (Córdoba, Colombia) a partir de la heterogeneidad de hábitat y la ecomorfología alar. (Tra- bajo de grado). Bogotá: Facultad de Ciencias, Carrera de Biología, Pontificia Universidad Javeriana; 88 pp. Dis- ponible en: https://repository.javeriana.edu.co/bitstream/ handle/10554/8582/tesis543.pdf?sequence=1&isAllowe- d=y

Pyke GH, Ehrlich PR. 2010. Biological collections and eco- logical/environmental research: a review, some ob- servations and a look to the future. Biol Rev. 85 (2): 247-66. Disponible en: https://doi.org/10.1111/j.1469- 185X.2009.00098.x

Pineda-Guerrero A, Gonzáles-Maya JF, Pérez-Torres J. 2015.

Conservation value of forest fragments for medium-sized carnivores in a silvopastoral system in Colombia. Mam- malia. 79 (1): 115-9. Disponible en: https://bit.ly/2Ieg8g7

Pizano C, García H. 2014. El Bosque Seco Tropical en Colom- bia. Bogotá: Instituto de Investigación de Recursos Bio- lógicos Alexander von Humboldt (IAvH); 349 pp. Dispo- nible en: http://www.humboldt.org.co/es/component/k2/ item/529-el-bosque-seco-tropical-en-colombia

Pla L, Casanoves F, Di Rienzo J. 2012. Quantifying functional biodiversity. Berlin: Springer; 98 pp.

Reardon S, Schoeman MC. 2017. Species richness, functional diversity and assemblage structure of insectivorous bats along an elevational gradient in tropical West Africa. Acta Chiropterologica. 19 (2): 273-85. Disponible en: https:// doi.org/10.3161/15081109ACC2017.19.2.005

Ríos-Blanco MC. 2010. Dieta y dispersion efectiva de semillas por murciélagos frugívoros en un fragmento de bosque seco tropical. Córdoba, Colombia. (Trabajo de grado). Bogotá: Facultad de Ciencias, Carrerade Biología, Ponti- ficia Universidad Javeriana; 54 pp. Disponible en: https:// bit.ly/2U7o0kO

Ríos-Blanco MC, Pérez-Torres J. 2015. Dieta de las especies dominantes del ensamblaje de murciélagos frugívoros en un bosque seco tropical (Colombia). Mastozoología Neotropical. 22 (1): 103-11. Disponible en: https://bit. ly/2ImvsGy

Sadeghian S, Rivera JM, Gómez ME. 1998. Impacto de siste- mas de ganadería sobre las características físicas, quí- micas y biológicas de suelos en los Andes de Colombia. pp. 77-95. En: Sánchez MD, Rosales-Méndez M (Eds.) Agroforestería para la producción animal en América Latina. FAO, Roma. Disponible en: http://www.fao.org/ ag/AGa/AGAP/FRG/AGROFOR1/siavosh6.pdf

Saldaña-Vásquez RA, Sosa VJ, Hernández-Montero JR, López-Becerra F. 2010. Abundance responses of fru- givorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous central Veracruz, Mexico. Biodivers Conserv. 19 (7): 2111-24. Disponible en: https://link.springer.com/article/10.1007/ s10531-010-9829-6

Salgado-Negret B (ed.). 2015. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Bogotá: Insti- tuto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH); 236 pp. Disponible en: https://bit. ly/2OYq0Lm

Shipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, Reich PB. 2016. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia. 180 (4): 923-31. Disponible en: https://link.springer.com/article/10.1007/ s00442-016-3549-x

Soriano PJ. 2000. Functional structure of bat communities in tropical rainforests and Andean cloud forests. Ecotropi- cos. 13 (1): 1-20. Disponible en: https://bit.ly/2Gbjtu3

Ueti A, Santos-Pompeu P, Lopes-Ferreira R. 2015. Asymmetry compensation in a small vampire bat population in a cave: a case study in Brazil. Subterranean Biology. 15: 57-67. Disponible en: https://subtbiol.pensoft.net/article/4807/

Vela-Vargas IM. 2013. Variaciones en la fenología reproduc- tiva de las especies de murciélagos en dos sistemas ga- naderos: Efecto de la disponibilidad de recursos. (Tesis de Maestría). Bogotá: Facultad de Ciencias, Pontificia Universidad Javeriana; 89 pp. Disponible en: https://re- pository.javeriana.edu.co/bitstream/handle/10554/9905/ VelaVargasIvanMauricio2013.pdf?sequence=1&isA- llowed=y

Violle C, Navas ML, Vile D, Kazakaou E, Fortunel C, HummelI, Garnier E. 2007. Let the concept of trait be function- al! Oikos. 116 (5): 882-92. Disponible en: https://doi.or- g/10.1111/j.0030-1299.2007.15559.x

Willig MR, Patterson BD, Stevens RD. 2003. Patterns of range, size, richness, and body size in Chiroptera. Pages: 580- 621. In: Kunz TH, Fenton MB (eds.) Bat ecology. Chica- go: The University of Chicago Press; 799 pp.

Zar JH. 1999. Biostatistical analysis. 4th ed. New Jersey: Pren- tice Hall; 929 pp.

Published

2018-07-19

How to Cite

Castillo-Figueroa, D., & Pérez-Torres, J. (2018). Functional responses of bats associated to tropical dry-forest in Córdoba (Colombia): management implications in extensive livestock systems. JOURNAL OF NEOTROPICAL BIODIVERSITY, 8(3), 197–211. https://doi.org/10.18636/bioneotropical.v8i3.724

Issue

Section

ZOOLOGY