Effect of forest gaps on insectivorous bats composition in Reserva Biológica La Tirimbina, Sarapiquí, Costa Rica
DOI:
https://doi.org/10.18636/bioneotropical.v2i2.84Keywords:
Anabat, Gaps, Jaccard, Insectivores, Costa Rica.Abstract
Due to the close relationships that bats establish with their environments, they have been considered ideal bioindicators for natural ecosystems’ disturbance. We analyzed the species composition of aerial insectivorous bats, using echolocation calls, in gaps and inside tropical rainforests, in order to analyze the influence of these natural disturbances. During May 2009, we evaluated the presence of bats using a frequency division ultrasonic recording device. We found significant differences in species composition between the inside of the forest and gaps (Jaccard= 0.308), and a high variation throughout the forests sites, and high similarities between the forest gaps. We discuss the potential effect of forest gaps in the insectivorous bats’ composition and habitat use, as well as the effect of the sampling method.
Downloads
References
Colwell RK. 2013. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http:// purl.oclc.org/estimates.
Herd RM. 1983. Pteronotus parnellii. Mammalian Species. 209: 1-5.
Jones G, Holderied MW. 2007. Bat echolocation calls: adaptation and convergent evolution. Proc Royal Socy B: Biol Sci. 274: 905-12.
Jung K, Kalko EKV, von Helversen O. 2007. Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. J Zool. 272: 125-37.
Jung K, Kalko EKV. 2011. Adaptability and vulnerability of high flying Neotropical aerial insectivorous bats to urbanization. Div Distrib. 17: 262-74.
Holdridge L. 1979. Ecología: basada en zonas de vida. San José: Instituto Interamericano de Ciencias Agropecuarias (IICA).
Kalko EKV. 1995. Echolocation signal design, foraging habitats and guild structure in six neotropical sheath-tailed bats (Emballonuridae). Symp Zool Soc Lond. 67: 259-73.
Kalko EKV, Schnitzler HU. 1993. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behav Ecol Sociobiol. 33: 415-28.
Kalko EKV, Schnitzler HU. 1998. How echolocating bats approach and acquire food. En: Bat biology and conser- vation. Kunz TH, Racey PA (Eds.). Washington, DC: Smithsonian Institution Press. pp. 197-204.
McDade L, Bawa KS, Hespenheide HA, Hartshorn GS (Eds.) 1994. La selva: ecology and natural history of a Neotropical rain forest. Chicago: The University of Chicago Press. 486 pp.
Mora EC, Macías S, Vater M, Coro F, Kössl M. 2004. Specializations for aerial hawking in the echolocation system of Molossus molossus (Molossidae, Chiroptera). J Compar Physiol. A: Neuroethol, Sens, Neural, Behav Physiol. 190: 561-74.
RTDC-R team development core. 2008. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Schaub A, Schnitzler H. 2007. Echolocation behavior of the bat Vespertilio murinus reveals the border between the habitat types «edge» and «open space». Behav Ecol Sociobiol. 61: 513-23.
Schnitzler HU, Kalko EKV. 2001. Echolocation by insect-eating bats. BioSci. 51: 557-69.
Siemers BM, Kalko EKV, Schnitzler HU. 2001. Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertilionidae): a convergent case with European species of Pipistrellus? Sociobiology 50: 417-28.
Weller TJ, Zabel CJ. 2002. Variation in bat detections due to detector orientation in a forest. Wildlife Soc Bull. 30: 922- 30.