Evaluation of the global climate models in the CMIP5 on the South America Northwest

Authors

  • Reiner Palomino-Lemus, CO Profesor, Universidad Tecnológica del Chocó, Quibdó, Colombia.
  • Samir Córdoba-Machado, CO Profesor, Universidad Tecnológica del Chocó, Quibdó, Colombia.
  • María Jesús Esteban-Parra, ES Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada, España.

DOI:

https://doi.org/10.18636/bioneotropical.v5i1.205

Keywords:

Climate models, CMIP5, Model evaluation/performance, Model comparison.

Abstract

Objective: The purpose of this study was to validate and compare the performance of six Global Climate Models (GCMs) simulations from the 5th Coupled Model Intercomparison Project (CMIP5) in the area of northern South America. Methodology: The validation study is carried out for sea level pressure (SLP) and sea surface temperature (SST), because of these are two of the most important global variables in describing the climate of Colombia. So, both variables are susceptible be used as predictors in statistical downscaling of precipitation in Colombia. To this end we compare the mean and variance fields of SLP and SST in different models of the CMIP5 with those obtained from the NCEP reanalysis data for the period 1950-2005. Furthermore, we have compared the main modes of variability derived from a Princi- pal Component Analysis (PCA). Results: The results show how the models reproduce reasonably well the mean fields of SLP and SST, although some models, such as CCSM4, tend to show more zonally SLP patterns, strengthening subtropical highs. Conclusions: For the PCA, all models reproduce the main variability modes associated with ENSO and tropical Atlantic reasonably well, while many of them tend to overestimate the variance associated with the first mode. 

Downloads

Download data is not yet available.

References

Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D. 2004. Predictability of El Nino in the past 148 years. Nature. 428: 733-6.

Fukuoka A. 1951. A study of 10-day forecast (A Synthetic Report). Geophysical Magazine. XXII: 177-218.

Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC,

Jayne SR, et al. 2011. The Community Climate System Model Version 4. J Climate. 24: 4973-91. URL http:// dx.doi.org/10.1175/2011JCLI4083.1

Giorgetta MA, Jungclaus JH, Reick CH, Legutke S, Bader J, Böttinger M, et al. 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst. 5 (3): 572-97.

Hibbard KA, Meehl GA, Cox P, Friedlingstein P. 2007. A strategy for climate change stabilization experiments. EOS. 88: 217-21.

Jolliffe IT, Uddin M, Vines SK. 2002. Simplified EOFs-three alternatives to retain. Climate Res. 20: 271-9.

Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, et al. 2011. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev. 4: 543-70. doi:10.5194/gmd-4-543

Kim D, Sobel AH, Del Genio AD, Chen Y, Camargo S, Yao M- S, et al. 2012. The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim. 25: 4641-59. doi: http://dx.doi.org/10.1175/ JCLI-D-11-00447.1

Lorenz EN. 1956. Empirical orthogonal functions and statistical weather prediction. Technical report, Statistical Forecast Project Report 1, Dep of Meteor, MIT. p. 49.

Meehl GA, Hibbard KA. 2007. A strategy for climate change stabilization experiments with AOGCMs and ESMs. WCRP Informal Report N° 3/2007, ICPO Publication N° 112, IGBP Report N° 57. Geneva: World Climate Research Programme; 35 pp.

Obukhov AM. 1947. Statistically homogeneous fields on a sphere. Uspethi Mathematicheskikh Nauk. 2: 196-8.

Obukhov AM. 1960. The statistically orthogonal expansion of empirical functions. Bull Acad Sci USSR Geophys Ser. (English Transl.), 288-91.

Pabón J, Eslava J, Gómez R. 2001. Características de gran escala del clima de la América Tropical. Meteorol Colomb. 4: 47-53.

Redmond KT, Koch RW. 1991. Surface climate and stream- flow variability in the western United States and their relationship to large-scale circulation indices. Water Resour Res. 27: 2381-99.

Rotstayn LD, Collier MA, Dix MR, Feng Y, Gordon HB, O’Farrell SP, et al. 2010. Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Intern J Climatol. 30: 1067-88. doi:10.1002/ joc.1952

Poveda G. 2004. La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Rev Acad Colomb Cien. 28 (107): 201-22.

Taylor KE, Stouffer RJ, Meehl GA. 2009 An overview of CMIP5 and the experiment design. Bull Am Meteor Soc. 93: 485- 98. doi:10.1175/BAMS-D-11-00094.1

Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, et al. 2010. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J Climate. 23: 6312-35. doi:10.1175/2010JCLI3679.1

Published

2015-01-29

How to Cite

Palomino-Lemus, R., Córdoba-Machado, S., & Esteban-Parra, M. J. (2015). Evaluation of the global climate models in the CMIP5 on the South America Northwest. JOURNAL OF NEOTROPICAL BIODIVERSITY, 5(1 Ene-Jun), 16–22. https://doi.org/10.18636/bioneotropical.v5i1.205

Issue

Section

ECOLOGY

Most read articles by the same author(s)