Fundamental ecological niche of Ecnomiohyla miotympanum (Cope, 1863) with DIVA-GIS and MaxEnt
DOI:
https://doi.org/10.18636/bioneotropical.v8i2.608Keywords:
Current and potential distribution, Maximum entropy, Tree frog small earsAbstract
Objective: Characterize the ecological niche of Ecnomiohyla miotympanum based on the environmental conditions for its development, using DIVA-GIS and MaxEnt. Methodology: Presence data of the species of Global Biodiversity Information Facility were obtained. Nineteen environmental layers and a topographic one was downloaded from WorldClim and cut out for the surrounding polygon of Mexico. The current distribution was developed using the total of records reported in the database; the potential distribution and the most important variables for the ecological niche were obtained with the MaxEnt software andanother map was obtained with DIVA-GIS to compare the results of the first map; the frequency of thepresence data was determined according to the altitude and type of climate where the records were reported. Results: The ecological niche map for E. miotympanum determined a robust model, because the values of the area under the curve were higher than 0.9, while DIVA-GIS predicted a map similar to thefirst, corroborating that independent of the algorithm used, it is reliable the favorable bioclimatic predictionfor the species. Conclusion: The precipitation of the driest month, the average temperature of the driest quarter and the elevation determined by 70%, that in these conditions the bioclimatic niche of E. miotympanum develops; the region of the Sierra Madre Oriental, mesophilic forest of mountain and tropical forest with semi humid warm climate, are the ecosystems that should be conserved for the maintenance of viable populations of this species.
Downloads
References
Alfaro MC. 2009. Densidad y microhábitat de la rana arborícola Ecnomiohyla miotypanum (Cope, 1863) en la región centro de Veracruz. (Trabajo de grado). Facultad de Biología Universidad Veracruzana. Veracruz, México. 40 p.
Audesirk T, Audesirk G, Byersc BE. 2004. Biología, ciencia y naturaleza. México: Pearson Educación; 534 p.
Buira A. 2016. Aplicación de modelos de nicho ecológico para la localización de seis plantas amenazadas en el Parque Natural de Els Ports (noreste de la Península Ibérica). Pirineos 171: 1-14. DOI: http://dx.doi.org/10.3989/Pirineos.2016.171001
Coitiño HI, Montenegro F, Fallabrino A, González EM, Hernández D. 2013. Distribución actual y potencial de Cabassous tatouay y Tamandua tetradactyla en el límite de su distribución: implicancias para su conservación en Uruguay. Edentata. 14: 23-34.
Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29: 129-51. DOI: 10.1111/j.2006.0906-7590.04596.x
García E. 1998. Climas. Clasificación de Köppen, modificado por García. Escala 1: 1000000. México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). URL
http://www.conabio.gob.mx/informacion/gis/layouts/clima1mgw.png
Gil, GE, Lobo JM. 2012. El uso de modelos predictivos de distribución para el diseño de muestreos de especies poco conocidas. Mastozool. neotrop. 19: 47-62.
Frías-Álvarez P, Zúñiga-Vega JJ, Flores-Villela O. 2010. A general assessment of the conservation status and decline trends of Mexican amphibians. Biodivers Conserv. 19: 3699-742. DOI: 10.1007/s10531-010-9923-9
Fithian W, Hastie T. 2013. Finite-sample equivalence in statistical models for presence-only data. Ann. Appl. Stat. 7: 1917-1939.
Hernández PA, Graham CH, Master LL, Albert DL. 2006. The effect of sample size and species characteristics on performance different species distribution modeling methods. Ecography. 29(5): 773-85. DOI: 101111/j.0906-7590.2006.04700.x
Hijmans RJ, Cameron SE, Parra JL, Jones P. Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965-1978.
Hijmans RJ, Guarino L, Jarvis A, O’Brien R, Mathur P, Rojas E, Cruz M, Barrantes I. 2004. DIVA-GIS v. 5.2. International Plant Genetic Resources Institute (IPGRI), International Potato Center (CIP), UC Berkeley Museum of Vertebrate Zoology, The Secretariat of the Pacific Community and others including SINGER/SGRP, FAO, USDA, SENASA, and BMZ. URL http://www.diva-gis.org/
INEGI. División política estatal. Instituto Nacional de Estadística Geografía e Informática. (En línea) 2014 (Acceso 15 diciembre 2014) URL http://www.cuentame.inegi.org.mx/monografias/default.aspx?tema=me
Naranjo M, Moreno ÁC, Martín S. 2014. ¿Dónde buscar troglobiontes? Ensayo de una cartografía predictiva con MaxEnt en Gran Canaria (islas Canarias). Arxius de Miscel· lània Zoològica. 12: 83-92.
Maciel-Mata CA, Manríquez-Morán N, Octavio-Aguilar P, Sánchez-Rojas G. 2015. El área de distribución de las especies: revisión del concepto. Acta Univ. 25: 03-19. DOI.ORG/10.15174/AU.2015.690
Mateo RG, Felicísimo AM, Muñoz J. 2011. Modelos de distribución de especies: una revisión sintética. Rev Chil Hist Nat. 84: 217-40. DOI: 10.4067/S0716-078X2011000200008
Merow C, Smith MJ, Silander JA. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography. 36: 1058-1069.
Ochoa-Ochoa L, Flores-Villela O, Gracia-Vázquez U, Correa-Cano M, Canseco-Márquez L. Áreas potenciales de distribución de la herpetofauna de México (En línea) 2006 (Acceso 28 de agosto 2015) URL http://www.conabio.gob.mx/informacion/metadata/gis/ecno_miotgw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no
Parra-Olea G, Flores-Villela O, Mendoza-Almeralla C. 2014. Biodiversidad de anfibios en México. Rev Mex Biodivers. 85: S460-S66. DOI: 10.7550/rmb.32027
Pearson RG, Raxworthy CJ, Nakamura M. Peterson AT. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102-117. http://dx.doi.org/10.1111/j.1365-2699.2006.01594.x
Peterson AT, Soberón J, Sánchez-Cordero V. 1999. Conservation of ecological niches in evolutionary time. Science. 285: 1265-67.
Peterson AT. 2001. Predicting species geographic distributions based on ecological niche modeling. The Condor. 103: 599-605.
Peterson AT, Papeş M, Soberón J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213: 63-72.
Phillips S. 2006. Una breve guía didáctica sobre Maxent (En línea). (Acceso 4 de junio 2014) URL http://www.cs.princeton.edu/∼schapire/maxent/tutorial/tutorial-in-spanish.doc
Phillips SJ, Miroslav D. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 31(2): 161-75. DOI: 10.1111/j.0906-7590.2008.5203.x
Phillips SJ, Dudik M, Scharpire RE. 2004. A maximum entropy approach to species distribution modeling. Canada: Proceedings of the 21st International Conference on Machine Learning, Banff.
Phillips SJ, Anderson RP, Scharpire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model. 190: 231-59. DOI: 10.1016/j.ecolmodel.2005.03.026
Santos-Barrera G, Canseco-Márquez L, Flores-Villela O. Ecnomiohyla miotympanum (En línea) 2004 (Acceso 29 Agosto 2015) URL http://www.iucnredlist.org/details/55566/0
Soberon J. Peterson AT. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Informatics. 2: 1-10
Sokal R, Rohlf J. 1995. Biometry. The principles and practice of statistics in biological research. New York: State University of New York at Stony Brook; 887 p.
Urbina-Cardona JN, Flores-Villela O. 2009. Ecological-niche modeling and prioritization of Conservation-Area Networks for Mexican Herpetofauna. Conserv Biol. 24(4): 1031-41. DOI: 10.1111/j.1523-1739.2009.01432.x
Varela S, Mateo RG, García-Valdés R, Fernández-González F. 2014. Macroecología y ecoinformática: sesgos, errores y predicciones en el modelado de distribuciones. Rev. Ecos. 23: 46-53.
Williams JN, Seo C, Thorne J, Nelson JK, Erwin S, O’Brien JM. Schwartz MW. 2009. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15: 565-576. http://dx.doi.org/10.1111/j.1472-4642.2009.00567.x
Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A. NCEAS Predicting Species Distributions Working Group. 2008. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14: 763-773. http://dx.doi.org/10.1111/j.1472-4642.2008.00482.x
Young B, Stuart S, Chanson JC, Cox NA, Boucher TM. 2004. Joyas que están desapareciendo: el estado de los anfibios en el Nuevo Mundo. Virginia: NatureServe y Red List Consortium; 53 p.
