Lichens as bioindicators of air quality in Quibdó city, Chocó, Colombia

Authors

  • Hamleth Valois Cuesta, CO Programa de Biología, Facultad de Ciencias Básicas, Universidad Tecnológica del Chocó, Quibdó, Chocó, Colombia
  • Yeison Mosquera-Palacios Programa de Biología, Facultad de Ciencias Básicas, Universidad Tecnológica del Chocó, Quibdó, Chocó, Colombia

DOI:

https://doi.org/10.18636/bioneotropical.v4i1.178

Keywords:

Air pollution, Bioindication, Biological sensors, Chocó, Lichens.

Abstract

Objective: The aim of this work was determinate the rol of lichens as bioindicators of air pollution in non-industrialized small towns. Methodology: The study was conducted in Quibdó, Chocó, Colombia. In this city we chose four sampling stations along a gradient of traffic congestion from the city center to a rural area. At each site we measured the structure and composition of the community of lichens. Results: Diversity (c2=0.4, p=0.19), evenness (c2=0.8, p=0.85), and dominance (c2=0.01, p=0.99) did not differ between sites. However, the percentage of foliose morpho-species (c2=47, p<0.001) and abundance (c2=239.5, p<0.001) tend to increase with traffic congestion while the percentage of crustose morpho-species (c2=133.2, p<0.001) and coverage (c2=9.1, p=0.02) decreased in the direction of the gradient. Families such as Physciaceae, Parmeliaceae, Coccocarpiaceae and Lobariaceae were more abundant at sites with high vehicular traffic while Pertusariaceae, Arthoniaceae, Lecanoraceae and Thelotremataceae were more representative in environments with no vehicular mobility. Conclusion: Lichen communities are highly sensitive to identify gradients of air pollution in non-industrialized small towns. Variables such as richness, abundance, coverage and composition of foliose and crustose lichens can be used to generate models for the identification of air pollution gradients. Families such as Physciaceae, Parmeliaceae, Lobariaceae, Coccocarpiaceae, Pertusariaceae, Arthoniaceae, Thelotremataceae and Lecanoraceae can be used for environmental zoning in Quibdó and other cities in the biogeographical-Chocó region.

 

Downloads

Download data is not yet available.

References

Alebic-Juretic A, Arko-Pijevac M. 1989. Air pollution damage to cell membranes in lichens – Results of simple biological test applied in Rijeka, Yugoslavia Yugoslavia. Water, Air, and Soil Pollution 47 (1-2): 25 – 33.

Aguirre J, Sipman H. 2004. Diversidad y riqueza de líquenes en el Chocó biogeográfico. En: Rangel-Ch JO (ed.) Colombia diversidad biótica IV Chocó Biogeográfico. Bogotá: Instituto de Ciencias Naturales, Universidad de Colombia. p 455-474.

Ariño X, Azuaga T, Gómez-Bolea A. 1997. Els liquens com a bioindicadors de la qualitat atmosférica: el cas de la vall de Fumanya (Cers, Barcelona). Butll. Inst. Cat. Hist. Nat 65: 5 – 13.

Aspiazu J, Cervantes L, Ramirez J, López J, Ramos R, Muñoz R, Villaseñor P. 2007. Temporal y spatial trends studied by lichen analysis: atmospheric deposition of trace elements in Mexico. Revista Mexicana de Física S53 (3): 87 – 96.

Bedregal P, Mendoza P, Ubilus M, Torres B, Hurtado J, Maza I, Espinoza R. 2009. El uso de Usnea sp. y Tillandsia capillaris, como bioindicadores de la contaminación ambiental en la ciudad de Lima, Perú. Rev. Soc. Quim. Perú 75(4): 479 – 487.

Boonpragod K, Nast TH. 1990. Seasonal variation on elemental status in the lichen Ramalina menziesii Tayl. From two sities in southern California: Evidence for dry deposition accumulation. Environ. Exp. Bot. 30: 415 – 428.

Conti ME, Cecchetti G. 2001. Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Envoromental Pollution 114: 471 – 492.

Garty J, Tamir O, Hassid I, Eshel A, Cohen Y, Karnieli A, Orlovsky L. 2001. Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. J. Environ. Qual. 30: 884 – 893.

Hawksworth DL, Rose F. 1979. Qualiative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227: 145-148.

Jaramillo MM, Botero LR. 2010. Comunidades liquénicas como bioindicadores de calidad del aire del Valle de Aburra. Revista Gestión y Ambiente 13(1): 97-110.

Leonardo L, Damatto SR, Gios BR, Mazzilli BP. 2014. Lichen specie Canoparmelia texana as bioindicator of environmental impact from the phosphate fertilizer industry of São Paulo, Brazil. Journal of Radioanalytical and Nuclear Chemistry 299 (3): 1935-1941.

Linares EL. 1998. Briófitos y líquenes de la cuenca del rió Subía, Cundinamarca. Pérez Arbelaezia 2 (6-7) 97 – 108.

Linares E, Pinzón M. 2001. Catálogo comentado de los líquenes y briofitos de la región subxerofiticas de la Heredia (Mosquera Cundinamarca). Caldasia 23(1) 237 – 246.

McCune B. 2000. Lichen communities as indicators of forest health. The Briologist 103(2): 353 – 356.

Poveda-M C, Rojas-P CA, Rudas-Ll A, Rangel-Ch JO. 2004. El Chocó biogeográfico: Ambiente físico. En: J. O. Rangel-Ch (Ed.), Colombia diversidad biótica IV, El Chocó biogeográfico / Costa Pacífica. Bogotá, Colombia: Instituto de Ciencias Naturales, Universidad Nacional de Colombia. p 1-21

R Core Team. 2012. R: A language and environment for statistical computing. R. Foundation for Statistical Computing. URL http://www.R-project.org/.

Rubiano L. 1987. Delimitación de áreas de isocontaminación en Cali y Medellín utilizando líquenes como bioindicadores. Perez-Arbelaezia 1(4): 7-41.

Rubiano L. 2002. Monitoreo de áreas de isocontaminación en la región de influencia de la Central Termoelétrica Martin del Corral utilizando líquenes como bioindicadores. Pérez-Arbelaiza 13: 91-105.

Rubiano L, Chaparro M. 2006. Delimitación de áreas de isocontaminación atmosférica en el campus de la Universidad Nacional de Colombia mediante el análisis de bioindicadores (líquenes epifitos). Acta Biológica Colombiana 11(2) 82 – 102.

Shrestha G, Petersen SL, Clair LL. 2012. Predicting the distribution of the air pollution sensive lichen species Usnea hirta. The Lichenologist 44(4): 511-521.

Silberstein L, Siegel BZ, Siegel SM, Mukhtar A, Galun M. 1996. Comparative studies on Xanthoria parietina, a pollution-resistant lichen, and Ramalina duriaei, a sensitive species. I. Effects of air pollution on physiological processes. Lichenologist 28(4): 355–365.

Sipman H. 2005. Identification key and literature guide to the genera of Lichenized Fungi (Lichens) in the Neotropics. Acceso 20 de agosto de 2011, en: www.bgbm.fu-berlin.de/sipman/keys/neokeyA.htm .

Ter Braak CJF, Šmilauer P. 2002. CANOCO Reference manual and CANODRAW for Windows User’s Guide version 4.5. Nueva York: Microcomputer Power.

Umaña L, Sipman H. 2002. Líquenes de Costa Rica. Instituto Nacional de Biodiversidad. Costa Rica: INBIO.

Valois-Cuesta H. 2006. Líquenes: aproximación a su conocimiento en un bosque pluvial tropical de departamento de Chocó (Colombia). Revista Institucional Universidad Tecnológica del Chocó 24: 8 – 15.

Villareal H, Álvarez M, Córdoba S, Escobar F, Fagua G, Gast F, Umaña AM. 2006. Manual de métodos para el desarrollo de inventarios de biodiversidad. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt.

Vokou D, Pirintsos SA, Loppi S. 1999. Lichens as bioindicators of temporal variations in air quality around Thessalonniky, northern Greece. Ecological Research 14: 89-96

Published

2014-06-16

How to Cite

Valois Cuesta, H., & Mosquera-Palacios, Y. (2014). Lichens as bioindicators of air quality in Quibdó city, Chocó, Colombia. JOURNAL OF NEOTROPICAL BIODIVERSITY, 4(1 Ene-Jun), 7–15. https://doi.org/10.18636/bioneotropical.v4i1.178

Issue

Section

BOTANY